Adaptive control of stochastic manufacturing systems with hidden Markovian demands and small noise

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive control of stochastic manufacturing systems with hidden Markovian demands and small noise

The adaptive production planning of failure-prone manufacturing systems is considered in this paper. In real manufacturing systems, the product demand is usually not known a priori. One of the major tasks in production scheduling is to estimate and predict the demand. In this paper, the authors consider the demand to be either the sum of an unknown rate and a small white noise or the sum of a h...

متن کامل

Stochastic Systems with Markovian Switching

Motivated by the study of a class of large-scale stochastic systems with Markovian switching, this correspondence paper is concerned with the practical stability in the pth mean. By investigating Lyapunov-like functions and the basic comparison principle, some criteria are derived for various types of practical stability in the pth mean of nonlinear stochastic systems. The main contribution of ...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Markovian Delay Prediction-Based Control of Networked Systems

A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 1999

ISSN: 0018-9286

DOI: 10.1109/9.746283